Int J. Solids Structures Vol, 29 No. 24, pp 3238 3280 1982 OZ0-THRT 92 S5O0 - 00
Printed 1n Great Brntun, Pergamon Press Lid

ON INTERACTING CRACKS IN UNIDIRECTIONAL
FIBROUS COMPOSITES

JosepH F. ZARZOUR
Concurrent Technology Corporation. Johnstown, PA 15904, US.A.

(Received 27 July 1991 < in revised form 6 June 1992)

Abstract—A crack interaction method for cracks in anisotropic fibrous composites is presented.
The method is based on the idea of superposition of resultant tractions along the crack faces. The
unknown tractions are expressed by a series of base functions which describe the fundamental
solution of stress induced by a solitary cruck in an infinite elastic medium, loaded by any such
functions. The method employed herein fulls within the scope of two-dimensional elasticity but may
analogously be applied to other three-dimensional problems (penny-shaped cracks). From the
results of various crack contigurations in unidirectional fibrous reinforced materials, it is shown
that the stress intensity factors strongly depend on the axial to transverse stiffness ratio. Finally,
some typical examples, which highlight specific features of the methed in different composite
material systems are considered and compared to other existing results.

I. INTRODUCTION

The widespread use of composite materials in modern design applications has resulted in
a growing interest in crack problems in anisotropic materials. Various solution technigues
have been employed [see for example, the papers by Sih ef af. (1965), Badaliance and Gupta
(1976). Delale and Erdogan (1977), Zang and Gudmundson (1991) and Binienda (1991)).
However, most of these approaches are often complex and limited to rather simple
geometrics.

The principal idea of the present approach is to extend the work of Benveniste er al.
(1989) to the realm of crack interaction in fibrous composite materials. The method of
solution uses a superposition technique which replices a configuration of N cracks with ¥
different problems, cach of which considers a single crack loaded by unknown traction in
an otherwise continuous infinite medium. The first step in the method is to choose a
polynomial expansion for the unknown crack-line traction. This polynomial is a weighted
sum of other polynomials that are called base functions in the sequel. The accuracy of the
polynomial expansion can be controlled by using base functions of suitable orders. The
sccond step is to compute the stress ficlds due to a single crack in an infinite medium loaded
by each of the above base functions individually. For convenience, Legendre polynomials
arc used to represent the base functions. However, other choices of base functions are
possible as shown by Benveniste ¢r af. (1989) for the case of an H-crack configuration.
Finally, the method uses the above information to reduce the original problem to a system
of lincar equations.

The first section of this paper introduces the superposition equations in the general
case, the second and third scctions, respectively, deal with specific examples which have been
solved in the literature by different methods.

2. METHOD OF SUPERPOSITION

Consider the general case of an infinite plate of elastic solid with ¥ randomly oricnted
cracks, subjected to arbitrary external loads p! (/ = 1, N). The distribution of p is assumed
to be symmetric with respect to the crack faces. Let o, be the half crack length and (x,. )
be the local reference system centered at the middle of the crack. The (v, 1) is chosen such
that the v,-axis coincides with the crack line. The function p,,(x,) denotes the normal traction
induced by crack i along the imaginary location of crack j when crack ¢ is loaded by P,(x,).
and s,(x;) denotes the shear traction induced by crack i along the imaginary location of
crack j when crack / is loaded by S,(x,). By superposition. the problem of & cracks will be
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represented by an equivalent .V different problems. each of which considers a single crack
in an infinite medium. but loaded by unknown normal and shear tractions P. S, (i = 1..V)
respectively. The terms P, and S, can be regarded as the overall tractions (after interaction)
generated at each crack face by the applied external load and by tractuons induced by
mutual interaction with cracks j (j = 1.V, j # ). The solution of the original problem is
then obtained by superposing the individual solutions of each of the NV problems separately.
The corresponding system of equations. labeled as superposition equations in Benveniste
et al. (1989). takes the form:

v v
plx) =P(x)+ Y pix). s'x) =Sx)+ Y s (). i # ) (hH

r=1 =1

There are several ways in the literature to represent the unknown tractions P, and §,.
However, for simplicity, the Legendre polynomial which is referred to by base functions in
the sequel 1s used herein:

v

P,(.\',) = Z ur‘l’)[“L:li)(:l)]- SI('\.I) = Z h:l’.[—L:l”(:l)]' (2)

n=1 =1

where &, = (5,/d)) is a normalized parameter and LY are the Legendre polynomials defined
by

1 d
(;l- -

[‘H(:l) =

RATING Id

Note that the minus sign convention in eqn (2) indicates that cach of the base functions
LY is used to promote a crack opening mode. On the other hand, crack closure is not dealt
with in the present work,

In general, depending on the orientation ol crack /, a normal (or shear) traction applied
at the faces of crack 7 will induce normal and/or shear traction along the line of crack .
Accordingly, a set of inlluence functions which describe the tractions at the line of crack i,
caused by the base functions — LY(E)) applied al crack j are defined. Four such functions
are needed

S 18 normal stress induced at location f by a normal stress of order n applied
at crack 7;

g (x) is normal stress induced at location j by a shear stress of order n applied at
crack 4;

I (x) is shear stress induced at tocation j by a normal stress of order n applied at
crack 7

¢ (x,) is shear stress induced at location j by a shear stress of order napplied at
crack i

The above influence functions are determined from the solution of a single crack in an
infinite medium loaded by concentrated unit foads (see Fig. Al in the Appendix).

The induced tractions p,,(x,) and s, (v,) can now be written in terms of the intluence
functions:

kY

polx) = Y [a [+ b g (X)),

na=ll

Y
s(x) = Y (@R B G (). (4)

n=10

where a." and A" are unknown weight coefficients to be determined. Substituting (4) and
(2) into (1) provides
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N N M
plx) =Y a'[-LYCEN+ Y Y (@) (x)+ 6 g7 (x)]
n=0 j=la=0

N N M
sPx) = Y BP—LPEN+ Y Y @A (x) 8 g7 ()], with # . (5)

n=0 j=1 =0
It is necessary to have an identical number of equations and unknowns 4", 6. Therefore,

each of eqns (5) is multiplied by L, (). A =0,1,2..... M and integrated with respect to x,
in the interval —d, to +d,. Using the orthogonality condition of Legendre polynomials

+
j l LA Lx(D dS = k[2/(2K+1)]. (6)

where J . is the Kronecker delta. and the non-dimensional parameter & = x,/d,, one finds:

N M
PR = —d’RdJQK+ D]+ Y T [aFeR + 6 G ),
j=t n=0
hl M
SO = ORAICK+ D]+ Y Y [@ HOO +BPQUR). with £ i (7
j=tl n=0

where the following definitions are used :

o d,
P = J PIENLR (v fd) dx,, s = '[ () LY (v Jd) d, (¥)
d,

d,

i

together with the formula

d,
Zo = J () LY (x,d) dx,. 9)

d,

Where Z* assumes in turn, the values of FU GO HOGA and Q49 while 29 assumes
in turn, the values of f'7, o', B and ¢, Recall that i=1.2,..., N:j=12..., N;
k=0,12,..., M;and n=0.1,2,..., M. Finally, eqns (5) provide 2N(M + 1) cquations
for the N(M + 1) unknowns «}", and N(M + |) unknowns b nceded for the evaluation of
tractions p,; and s,, in (4). The stress intensity factors can be evaluated from the well-known
expression for the point load solution

- 1 +d, ll,tS, 12 . '
Kin = :/1;‘7' f../, (I/F S,) (P(s,). S(s)) ds,, (10)

where + denotes the stress intensity factor at the inner/outer crack tips and P(y,), S(s,) are
the overall normal and shear traction, respectively, at the faces of crack 7 given by (1).

3. APPLICATIONS

As a first cxample, the problem of infinite plate with two scparate cracks as shown in
Fig. | is considered. This problem has been solved by Badaliance and Gupta (1976) for the
isotropic case and by Binienda ¢ al. (1991) for the corresponding orthotropic case using
the singular integrals technique. The purpose of analysing this example herein is to provide
verification of the present scheme against other approaches and techniques. The material
used in Binienda et al. (1991) is a Gr/Epoxy with the following clastic constants:
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Er=21.08x10°psi. Er = 5.08x 10" psi.
Gr=1.5x10°psi. Guyr=0.98x10"psi, vyr =0.3. (1)

where subscripts A and T denote axial and transverse direction. respectively.

According to Fig. 1. crack 2 is aligned with the fiber direction such that its local
reference system (x,, v,) coincides with the principal axes of elastic symmetry. In the sequel,
the position of crack 2 is referred to as on-axis. On the other hand, crack | which remains
in the horizontal plane at an angle @ from the fiber axis (1,.%, = 0) is referred to as off-axis.
Note that the material anisotropy for each crack system is a function of crack orientation
with respect to the fiber-axis. and on-axis cracks admit purely imaginary roots while off-
axis cracks admit general complex roots (see Appendix).

First, consider the case where the external applied load is a remote uniform tension.
By superposition, the far-field uniform tension is resolved on each crack face and stresses
vanish at infinity ; the equivalent problem is shown in Fig. 1(b). The problem formulation
will be adopted from Section 2.

With reference to eqn (1), the resulting superposition equations are schematically
described in Figs 1(c)—(e) and are given below as:

Crack 1 :

-p’ = PI(-YI)+I,1I(-\AI)- 0=S8(x)+5(x)): (12)

Crack 2:

-p' cos® () = Pa(x)+pia(xa), —p-sin(@)cos(0) = Sy(x;) +5,2(x0) 5 (13)

where the unknown tractions P,(x)) and S/(x,), ( = 1,2) are expressed by u combination
of Legendre polynomials as:

p-cos’o

(c) (d) (e)

Fig. 1. The two-cracks problem and the schematic of superposition technique.
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1
Px) = Y al’[-LYC)]. S(x) = Y [-LVE)]. (i=1.2). (14)

a=0

For simplicity. the first and second order of Legendre polynomials (uniform, linear) are
selected here. In actual calculations. one could choose a higher order of L, as required.

In the second step of the solution, the influence functions [see Zarzour (1990)] are also
expanded in terms of L,. Therefore, with reference to (4), it follows that

pulx) = Z [a"’j""(\ V4B g ()] =125/ =1.2;0 #)),

s(x) =Y [aVA](x,)+6¢1 (x)]. (15)

n=10

Substitution of (15) and (14) into (12) and (13) for crack 1 and crack 2, respectively, gives:

Crack 1:
{
-p" = L "[-L"E0+ Z [ f7 (6 ) + b2 g (x )],
n—=10 n=1{
0= Z B[ = L€ D)+ Z (@R (e )+ B2 g5 (x ) (16)
n- n=10
Crack 2:

|
=preost (0) = ¥ a?[=LPED+ X [ah" ST + 8, g ()],

n-0 n~1)

—p*©sin (0)cos () = }: M- L (E D]+ Z (A H (o) + 5L g (x)]. an

n—=10 n=u

Multiply (16) and (17) by L{". kK = 0,1 and integrate from —d, to +d, to provide a system
of algebraic equations with certain unknown coeflicients «f?, b)". The corresponding equa-
tions arc:

PO = —a[2d )2k + 1)) + Z [ Fob 4 pIGoR) (= 1,255 = 1,20 # ),
)
.\‘:“ — hm[‘)‘//(‘)/\+ ])]+ Z [ll”'fl("k)-{-bf,’) Mki (18)

LERY

where Fit® G H™ and Q4% are given by (9).
Finally, lhc, stress intensity factor at the inner/outer tip for each crack can be obtained
in the following way :

Crack 1:

+d, 12 |
~(nd j ("—'-_i_—") (p'-+Z(a‘f’f‘z".’(s)+b‘f’g‘z".’(s))> ds,
dy

(1|+.Y n=0

. +idy { +. 1.2 I
ki =(”d')_l“J, (ﬁz.%i) Z,,(" PHEs) +67g51(5)) d. (19)
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Fods g+ o\ . 1
ki = (rdy) ! :J <d;_:+-_:‘> (r”" cos™ () + Z (aiul)fllnz)(s)'+‘hf-“!/(ln:'(5))> ds.

ds n=1

/\'ﬁ = (ﬂ.'l[:) e

Cody S+ g\ 2 1
(:;ii) (p" sin (6) cos (8) + (al,"h'{':’(s)+bﬁ,“q‘,";’(s))> ds. (20
2 B n=1)

J - ds

where 5 is a variable of integration.

4. NUMERICAL RESULTS

Hereafter, derivations of the stress intensity factors for the previous example of a two-
cracks problem as well as several other examples in both isotropic and orthotropic materials
are developed.

4.1. Two-crack problen under uniform axial tension

Figure 2 illustrates the crack configuration and the loading conditions, and presents
the stress intensity factor results. These are the K| and K, factors at the outer tip o of crack
1 and outer tip 8 of crack 2 for the isotropic case. Similarly, Fig. 3 presents the same results
for the orthotropic material where the clastic constants are described in (11). The stress
intensity factors are normalized by KV(K{ =p”’ \/na) and given for the full range of
00 =0,...,90 ). As mentioned before, the Legendre polynomial s truncated at nw =3
which corresponds to a cubic term. In the isotropic case, Fig. 2, the results are compared
to those found by Binienda er al. (1991) who used the method of singular integral equations
with generalized Cauchy kernels, A close agreement was found for K(A), Ky (A) and for
A(1), Ky (8). In the orthotropic case, Fig. 3, the fiber orientation is aligned with crack 2
at an angle ¢ from crack 1. The results, which compare well with Binienda er al. (1991)
indicate that for this configuration, the material influence is rather weak and the stress
intensity factors at the tips of both crack | and crack 2 are very similar to those of the
corresponding isotropic case.

4.2, An H-crack under uniform axial stress

Crack branching phenomena such as H-crack or T-crack shapes are often found in
fracture problems of unidirectional composites. The stress intensity factors at the tips of
these cracks are usually informative about crack stability and fracture toughness

22f
20 —— Presentanalysis
~ == Binienda et al.
1.8 (1991)
§ 16
o 14
S .
[ KAVK]
g 1.2 :,--_-/
- 10f
D ggf M@
E
5 ['X-3 3
z 04} ,/’
02f A& Kuan
N VA M ~
LY SO ST S GO SO S S S

"0 10 20 30 40 S0 60 70 80 90
Theta (Degrees)

Fig. 2. The stress intensity factors of a two-cracks problem as a function of the kink angle. 6.
Isotropic casc witha = h, § = 0.1.
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Fig. 3. The stress intensity factors of a two-cracks problem as a function of the kink angle, 0.
Orthotropic case witha = .0 = 0.1.

parameters. In a previous study by Dvorak er al. (1992) on fracture of metal matrix
composites. the analysis required the solution of an H-crack shape in B/4/ and FP/A/
composite systems. In the present analysis, the case of an H-crack shape under uniform
axial stress is considered. The dominant stress intensity factor K (A4) is normalized by K7
(KY =p° \/nL) and obtained for both the isotropic and orthotropic cases in terms of the
ratios R/L as indicated by Fig. 4. As in Benveniste ef af. (1989). non-lincar crack shapes
are dealt with by coalescing line cracks into the desired configuration, thus, an H-crack
consists of three cracks [see §4 ol Benveniste ef af. (1989)].

In the isotropic case, the present results were previously obtained by Benveniste ef al.
(1989) and compared to other existing solutions in the literature and found to be in close
agreement. In the orthotropic case, the fibers are axially oriented along the applied load and
two composite systems are considered ; Gr/Epoxy and B/A7. The material propertics for
B/AL are:

E:\
G A

237.3 x 10" MPa, £y = 143.1x 10" MPa,
55 x 10" MPa, var = 0.21.

Shown in Fig. 4 are the four curves obtained for Gr/Epoxy with different ratios of E,/E,

05

Norm. Str. Int. factor, K(A¥KS

T A

— isotropc »
LR i,y

~— — GrEpoxy

o~
00 1 i L L
0 2 4 -] 8 10
R/L

Fig. 4. The H-crack configuration under uniform axial load. The stress intensity factor Kj; at point
A, non-dimensionalized with respect to Ki' = p*/nL. plotted versus the ratio R/L. Isotropic and
orthotropic results.
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Fig. 5. The extended H-crack configuration under uniform axial load. The stress intensity factor
K, at point 4. non-dimensionalized with respect to K¢ = p* /nL. plotted versus the ratio d/L.
Isotrapic and orthotropic results for R = L.

while other parameters are kept constant. As the ratio decreases from 14 to |, the results
indicated a slow convergence toward the isotropic curve. On the other hand, the curve
representing the B/ A/ results (£,4/Ey = 1.7) showed a closer but not total agreement with
the isotropic one.

4.3, dn extended H-crack under uniform axial stress

This is a special case of the H-crack configuration in which the ratio R/L = | and the
middle crack has propagated by an amount 29, Figure 5 shows the results of Ky, (4)/K] in
terms of the ratios o/ L for both the isotropic and orthotropic cases. Similarly to the previous
H-crack configuration, the results corresponding to Gr/Epoxy composite show a tendency
for u slow convergence toward the isotropic results as the ratios £,/ Ly decrease from 14 to
[ whereas the results corresponding to the B/ A7 composite indicated a better convergence
to the isotropic case.

4.4, A cross-crack under hvdrostatic pressure

Figure 6 shows the crack conliguration and loading condition and presents the pre-
dicted results comparing them with those given by Cheung and Chen (1987) for the isotropic
case. The stress intensity factors K (A)/KY and K(B)/K/, (K} =p"“\/7ru) are in good

1.2
—— Present analysis
=== Cheung et al. (1987)
5 K (AVKS
bt 08}f
=
E
o
E o4
[o]
Zz R
. |
Q 1.2

b/a

Fig. 6. The cross-shape configuration under hydrostatic pressure. The stress intensity factors K, (4)
and K, (B) are normalized with respect to K7 = p* | ', Isotropic results.
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Fig. 7. The cross-shape configuration under hydrostatic pressure. The stress intensity factors K(A4)

and K (B) are normalized with respect to K} = p'\/ﬁ. Isotropic and orthotropic (Gr/Epoxy)
results.

agreement with those reported by Cheung and Chen (1987) over the entire range of b/a
ratios.

Figures 7 and 8 present respectively the corresponding results for the Gr/Epoxy and
B/ A/ composites. In each case, the composite was considered to be reinforced axially or
transversely. For the B/ A/ composite, Fig. 7. the results are found to be almost identical
to those of the isotropic case for K (A) and almost symmetric with respect to the isotropic
curve for K (B)/K?. On the other hand. the results for the Gr/Epoxy composite, Fig. 8, are
far apart from the isotropic curve for K, (#) but not so different for K (A).

5. CONCLUSION

In summary, the problem of interucting cracks in orthotropic composites wus
considered. The method of superposition proposed herein indicated that the solution for
complicated crack configuration can be obtained by the sume simplicity as in the isotropic
materials. In the B/4/ and Gr/Epoxy composiles, it was observed that for cracks which
are aligned with the fiber axis, the stress intensity factors and the EL/E; ratio have an
inverse relationship.

The numerical results obtained herein are valuable for understanding the behavior of
crack branching as well as stress shielding/amplification in some anisotropic materials.

1.5
10
-]
3
- oS}
E
2 0
£
[=] .
4 —— Isotropic it @0 NN o
05F --- /A (vertical ° °
renforcement) 28—
- = Al (horizontal
reinforcement) [
_‘ 0 1 1 1 1 1
o 02 04 06 08 10 12

b/a

Fig. 8. The cross-shape configuration under hydrostatic pressure. The stress intensity factors K;(A)
and K,(B) are normalized with respect to K¢ = p"\/na. [sotropic and orthotropic (B8/A¢) results.
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APPENDIX: DERIVATIONS OF POWER-TYPE TRACTIONS

Consider a single crack of length 27 located in an infinte orthotropic medium. Let the crack be subjected to
concentrited normal and shear foads 22 and @ as shown in Fig, Al

A coordinate system (v, ¥) is located in the middle of the crack and the concentrated loads are applicd at
(1,0). Since the loads £ and @ as appearing in that figure result in negative normal and shear stress respectively
adjacent to the point of application, they will be assigned negative values, P < 0, Q < 0.

The problems of two-dimensionil orthotropic elasticity can be reduced to finding two complex stress functions
@2y and (2,) where the comples variables 2, (= 1,2) arc given by

IS NS, Iy = NN, (A1)
with the parameters s, and x, being the roots of the characteristics equation [see Lekhmitskii (1963)]
a8 2000 Qs i )T = s Fay = 0 (A2)

The a, are the flexibility coeflicients in generalized plane stress defined by

e an dn a1 o
gl @y us el | (A)
Ve lia Uin UopdlTy,

For plane orthotropic problems, the coeflicients of shear couphng ¢, and a,, vanish and (A2) reduces to

Y
lF’
t
Q X
C )
il
| 20—

Fig. Al. A solitary crack loaded by concentrated shear and normal unit loads.
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,
s‘+(‘”—””°‘)s’+‘-‘£ =0. (A4)

a, di

It has been shown by Lekhnitskii (1963) that the roots of (A4) are always complex or purely imaginary and will
occur in conjugate pairs, i.e. 5,.5, and s,.5,. Without loss in generality, it is always possible to choose

5, =a,+ib,. 5. =a,+ib,. (AS5)
such thatb, > 0. b, >0and b, # 5.
The general expression for the stresses are then:
.. = 2Re[sip(=)) +si(z2)]
0, = 2Re{d(z)+¥ ().
6, = —2Re[s d(z ) +5:4(1)]. (A6)

If the roots in (A4) are known for a reference system (x, y) then for any other reference (X", 3) rotated at an angle
0 from (x.y). the new roots are found from the following formula:

PR LT cos (20 + 1/2(ai , + b7 ,)sin 20V | by, (A7)
Gt = [Cos () +ay o sin (D) + (A, s sin (O] [cos () +a, ;sin (D] +[b, ;sin(D])
In particular, if the x-axis coincides with the fiber orientation, then

s, =1b, and s, =1ih,,

hence

, V2B~ sin@0) b
L= ([ms O b, 5 sin (())l:)+l<[c0s O+ b, 3sin (0)1-')' (A%)

For the concentrated loid on an isolated crack, the potential functions ¢,(z)). ¢.(z2) and ¢, (2). ¢.(z2;) lor
the P and @ loadings respectively, are given by Sih and Lichowitz (1968)

[Css =5 Ms2lbalz) = =Pf(2)), (s:=5)(2)) = ~Qf(z)). P<O,
(5 =5 W(2) = =0f(). (i =58 Wa(z2) = =Pf(z), @ <0, (A9)
where
Sy = Rrz=n) (7 =) =) (A10)
As in the isotropic case, implementation of the crack interaction scheme to orthotropic media necessitutes
the use of power-type traction distributions (uniform, lincar, quadratic, cubic and quartic). The correspond-
ing stress potential functions can be derived by following a procedure of contour integration described by

Muskhelishvili (1953). :
In Mode [ (opening mode) the stress potential functions are obtained from:

=8\, [0 ey foe-e)e ‘
( 5, )¢.(-.)-4[_,2“(:'_1)[_;——;._[:] dr, (Alla)

S =5, o 4 ) 1745 ,:_,:- 1.2
(’-T.’")“'-‘ ‘,f.,z?r“”:..-n[;gt?] dr. (Allb)

where 2 = (0, 1,2, 3. 4) indicating, respectively, uniform, linear, quadratic, cubic and quartic terms.
The corresponding stress potential functions are:

and similarly

Uniform load :

("?:Ei)«b.(:.) = 2= 2 = (21 =) ).

( “‘“)w:o = R0 =G =) L (Al2a)
1

5

Lincar load :
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‘T-—n\" . . . . . . . /.‘
(: )dm:,) =[2(zi =07 ']"I::,'—:. - =y :I

S =8 B . . 5 s
( - '>~//,(:;)=[2/(:3—/')"]"I::;—::(:;-/-)'-—T]. (Al12b)

3y

Quadratic load :

<”"?:i‘l'> bulz) = 263z =) ] = =) ),

S =5, Vs ps N s s Al s 5
(~—-)w::) = 2=/ =i =) = ), (Al2)
i

R

Cubic load :

Si—5 T B 4 s
(““_‘ >¢n(:|)=[2/~(:;—/-) 7] [:.—:a(::—ﬁ) '—::5*Lf }

5, =52 ‘ s e
<i‘7«“‘:)"’~‘::) =[G '[:‘:—:i(:z—f')‘ -y —L/‘]. (Al2d)
5, 2

/

Quartic load :

N, =g . L . R L. D e
< flv:r——')d),,(:,) =i '[:. -y i JjA -z k—].

Sy e s ot ’*
<" “)vb.,t::):[2/‘(::34:)"‘1 ’[:}—:?cs—/“)"— 5 T ] (Al2e)
8 2 h

In mode 1 (shearing maode), all loading-type stress potentials can be obtained from those of mode [ using the
following relationship:

{ I
. ha(21) = p2)) ) W2 = (20 (Al13)
5y 5

Substitution of (A12) (A13) into (A6) provides the influence functions which constitute the basic ingredient of
the method. Although the influence functions are evaluated here in terms of complex potential functions, they
can actuadly be expressed in clementary functions {see Zarzour (1990)].



